Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем.




НазваниеКнига посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем.
страница18/53
Дата публикации28.07.2013
Размер3.14 Mb.
ТипКнига
lit-yaz.ru > Финансы > Книга
1   ...   14   15   16   17   18   19   20   21   ...   53
^

§ 4.2. Диверсификация инвестиций и дисперсия дохода


Определим теперь, что дает диверсификация для уменьшения риска, и выявим условия, когда эта цель достигается. В качестве объекта анализа примем некоторый абстрактный портфель ценных бумаг (далее для краткости — портфель). Такой выбор объясняется методологическими преимуществами — в этом случае проще выявить зависимости между основными переменными. Однако многие из полученных результатов без большой натяжки можно распространить и на производственные инвестиции.

В § 4.1 отмечалось, что в качестве измерителя риска в долгосрочных финансовых операциях широко распространена такая мера, как дисперсия дохода во времени. Диверсификация портфеля при правильном ее применении приводит к уменьшению этой дисперсии при всех прочих равных условиях. Диверсификация базируется на простой гипотезе. Если каждая компонента портфеля (в рассматриваемой задаче — вид ценной бумаги) характеризуется некоторой дисперсией дохода, то доход от портфеля имеет дисперсию, определяемую его составом. Таким образом, изменяя состав портфеля, можно менять суммарную дисперсию дохода, а в некоторых случаях свести ее к минимуму.

Итак, пусть имеется портфель из п видов ценных бумаг. Доход от одной бумаги вида i составляет величину di. Суммарный доход А равен:

(4.1)

где аi — количество бумаг вида i.

Если di представляет собой средний доход от бумаги вида i, то величина А характеризует средний доход от портфеля бумаг в целом.

Для начала положим, что показатели доходов различных видов бумаг являются статистически независимыми величинами (иначе говоря, не коррелируют между собой). Дисперсия дохода портфеля (обозначим ее D) в этом случае находится как

(4.2)

где Diдисперсия дохода от бумаги вида i.

Для упрощения, которое нисколько не повлияет на результаты дальнейших рассуждений, перейдем от абсолютного измерения количества ценных бумаг к относительному. Пусть теперь ai характеризует долю в портфеле бумаги вида i. Соответственно 0 ai 1; ai = 1.

Для зависимых в статистическом смысле показателей дохода отдельных бумаг дисперсию суммарного дохода находим следующим образом19:

(4.3)

где Di — дисперсия дохода от бумаги вида i;

rij коэффициент корреляции дохода от бумаг вида i и j;

и — среднее квадратическое отклонение дохода у бумаг вида i и j.

Коэффициент корреляции двух случайных переменных х и у20, как известно, определяется по формуле:

, (4.4)

где — средние (в нашем случае средние доходы двух видов бумаг).

Для расчетов часто применяется следующая рабочая формула:

.

Поскольку коэффициент корреляции может быть как положительной, так и отрицательной величиной, то при положительной корреляции дисперсия суммарного дохода увеличивается, при отрицательной — сокращается. В самом деле, при заметной отрицательной корреляции положительные отклонения от среднего дохода одних бумаг погашаются отрицательными отклонениями у других. И наоборот, при положительной корреляции отклонения суммируются, что увеличивает общую дисперсию и риск.

Проследим теперь, каково влияние масштаба диверсификации на размер риска. Под масштабом диверсификации будем понимать количество объектов, возможных для инвестирования (количество видов ценных бумаг). Обратимся к условному примеру, который позволяет наиболее отчетливо выделить влияние указанного фактора. Итак, пусть портфель состоит из бумаг различного вида, но имеющих одинаковую дисперсию дохода . Удельные веса в портфеле каждого вида бумаг также одинаковы, а общая сумма вложений равна 1. Положим, что показатели доходности у отдельных видов бумаг статистически независимы, т. е. применима формула (4.2). В этих условиях для оценки величины среднего квадратического отклонения дохода портфеля получим:

,

где п — количество видов ценных бумаг.

Воспользуемся приведенной формулой и определим дисперсию дохода для портфеля, состоящего из двух и трех видов бумаг. Так, для двух бумаг имеем

.

Для трех видов бумаг квадратическое отклонение портфеля составит 0,580. Таким образом, с увеличением числа составляющих портфеля риск уменьшается даже при одинаковой дисперсии составляющих элементов, однако действенность диверсификации снижается. Соответствующая зависимость изображена на рис. 4.2.

Увеличение масштабов диверсификации оказывает наибольшее влияние на начальных стадиях — при малых значениях n. Например, в рамках рассмотренного примера переход от одного вида бумаг к четырем сокращает квадратическое отклонение на 50%, а от одного к восьми — на 65%.

Полученные выше выводы в отношении тенденции изменения среднего квадратического отклонения в зависимости от числа составляющих при условии, когда дисперсии составляю-



щих одинаковы, справедливы и для более общих случаев. Однако зависимость этого параметра от степени диверсификации проявляется здесь не столь четко.

Посмотрим теперь, как изменяются доход и величина риска при изменении структуры портфеля. Для этого вернемся к формулам (4.2) и (4.3) и запишем их только для двух видов бумаг (X и Y). Такой анализ вряд ли имеет практическое значение. Однако с его помощью наглядно демонстрируются последствия "смешения" ценных бумаг с различными доходностью и дисперсией. Для независимых доходов получим:

(4.5)

и для зависимых доходов

(4.6)

Причем ау = 1 - ах.

В этом случае среднее значение суммарного дохода определяется как

A = axdx + (1 - ax )dy. (4.7)

Положим, что dy > dx и . Тогда увеличение доли бумаг второго вида увеличивает доходность портфеля. Так, на основе (4.7) получим

A = dx + (dy - dx)ay. (4.8)



Рис. 4.3

Что касается дисперсии, то, как следует из (4.6), положение не столь однозначно и зависит от знака и степени корреляции. В связи с этим подробно рассмотрим три ситуации:

  • полная положительная корреляция доходов (rxy = +1),

  • полная отрицательная корреляция (rху = -1),

  • независимость доходов или нулевая корреляция (rху = 0).

В первом случае увеличение дохода за счет включения в портфель бумаги вида Y помимо X сопровождается ростом как дохода, так и дисперсии. Для портфеля, содержащего оба вида бумаг, квадратическое отклонение находится в пределах (рис. 4.3).

Для частного случая, когда , получим по формуле (4.6) D =. Иначе говоря, "смешение" инвестиций здесь не окажет никакого влияния на величину дисперсии.

При полной отрицательной корреляции доходов динамика квадратического отклонения доходов от портфеля более сложная. По мере движения от точки X к точке Y эта величина сначала сокращается и доходит до нуля в точке B, затем растет (рис. 4.4).



Рис. 4.4

В последней из рассматриваемых ситуаций (rху = 0) квадратическое отклонение при увеличении доли бумаги Y проходит точку минимума, равного , далее оно растет до (рис. 4.5).



Рис. 4.5

Совместим теперь все три графика на одном (рис. 4.6). Как видим, все возможные варианты зависимости "доход — среднее квадратическое отклонение" находятся в треугольнике XBY.



Рис. 4.6

Из сказанного непосредственно следует, что эффективность диверсификации (в отношении сокращения риска) наблюдается только при отрицательной или, в крайнем случае, нулевой корреляции.
ПРИМЕР 1

Портфель должен состоять из двух видов бумаг, параметры которых: dx = 2; = 0,8; dy = 3; = 1,1.

Доход от портфеля: А = 2ах + 3ау . Таким образом, доход в зависимости от величины долей находится в пределах 2А3 .

Дисперсия суммы дохода составит:

.

Определим доход и дисперсию для портфеля с долями, равными, допустим, 0,3 и 0,7. Получим по формулам (4.5) и (4.6):

А = 2,7 и D = 0,669 + 0,185 rxy.

Таким образом, при полной положительной корреляции D = 0,854, при полной отрицательной корреляции D = 0,484 . В итоге с вероятностью 95% можно утверждать, что суммарный доход находится в первом случае в пределах



во втором он определяется пределами

.

При нулевой корреляции доходов пределы составят

.

Продолжим анализ с двумя бумагами и проследим, как влияет включение в портфель безрисковой (risk free) инвестиции21. Для этого заменим в портфеле бумагу Y с параметрами dy, на бумагу с такой же доходностью, но с нулевой дисперсией. Доходность портфеля от такой замены, разумеется, не изменится. Что же касается дисперсии, то она теперь составит:

.

Дисперсия и среднее квадратическое отклонение дохода портфеля теперь зависят от удельного веса безрисковой составляющей:

(4.9)

Таким образом, "разбавление" портфеля безрисковой бумагой снижает риск портфеля в целом, а квадратическое отклонение дохода портфеля определяется убывающей линейной функцией доли безрисковой бумаги. Если dx > dy (в противном случае проблема выбора портфеля отпадает — он должен состоять только из безрисковых бумаг), то доход от портфеля по мере увеличения доли безрисковой бумаги уменьшается от dx до dy, а величина квадратического отклонения сокращается от до 0 (рис. 4.7). И наоборот, рост доли рисковой бумаги увеличивает как риск, так и доход.

Последнее утверждение для портфеля, состоящего из двух видов бумаг, иллюстрируется уравнением (4.10):

A = dy + (dx - dy)ax. (4.10)


Рис. 4.7

В свою очередь, на основе (4.9) находим

.

В итоге получим интересное соотношение

. (4.11)

Дробь в приведенном выражении иногда называют рыночной ценой риска. Если эта величина равна, скажем, 0,5, то при росте квадратического отклонения на 1% доход увеличится на 0,5%.

1   ...   14   15   16   17   18   19   20   21   ...   53

Похожие:

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconМенеджмент
В частности, дано представление о современной теории экспертных оценок, показана необоснованность часто используемых методов сравнения...

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconПрограмма дисциплины «национальная экономика»
Производственные ресурсы. Технологический способ соединения факторов производства. Показатели эффективности. Закон убывающей эффективности....

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconИнформационный лист
Современные средства коммуникации в логистике производственных и сервисных предприятий

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. icon27 производственных предприятий электроэнергетики, приборостроения,...
Среднемесячная производительность труда одного работника превосходит показатель первого полугодия 2005 года на 50%. Средняя заработная...

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconП. м. – процесс упр-я произ-вом пр-ции, включает в себя: упр-е технич...
Эффективность п м во многом определяется точностью прогнозов стратегических тенденций развития общества, идеологии, производственных...

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconАгропромышленный комплекс контрольная работа нормативная база планирования
Контроль за выполнением планов, производственных программ и заданий

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconII. Для опасных производственных объектов типа 3 с признаком опасности 2
Технические решения по обеспечению безопасности технологического процесса [Т, пб, тр]

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconПостановление от 17. 05. 2012 №411 г. Ростов-на-Дону Об утверждении...
«о порядке принятия решения о разработке областных долгосрочных целевых программ, их формирования и реализации и Порядке проведения...

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconПоложение о научном обществе учащихся
Мбоу сош №4 или (по договоренности) базе институтских лабораторий, кафедр, производственных экспериментальных участков

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconВиды измерений, проводимых испытательной лабораторией ООО «Рострудэксперт»
СанПиН 2 548-96 «Гигиенические требования к микроклимату производственных помещений», утв постановлением Госкомсанэпиднадзора РФ...



Образовательный материал



При копировании материала укажите ссылку © 2013
контакты
lit-yaz.ru
главная страница