Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем.




НазваниеКнига посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем.
страница37/53
Дата публикации28.07.2013
Размер3.14 Mb.
ТипКнига
lit-yaz.ru > Финансы > Книга
1   ...   33   34   35   36   37   38   39   40   ...   53
^

§ 8.2. Методы определения интервальных прогнозов


После установления РВД и выбора вида распределения и уровня ДВ расчет границ интервального прогноза становится чисто технической задачей. Ее решение заключается в отсечении "лишних" концов РВД соответственно принятой доверительной вероятности. Иначе говоря, находят величины

А = а + х; B =b - x ,

где xвеличина, зависящая от вида распределения и вероятности неудачи (неосуществления прогноза); очевидно, что упомянутая вероятность равна 1 - ДВ. Площади под кривой распределения, отсекаемые от "хвостов", равны половине этой вероятности (см. рис. 8.2) для треугольного распределения:

. (8.1)

Значения этой вероятности для некоторых уровней ДВ приведены в табл. 8.1.



Рис. 8.2

Таблица 8.1

ДВ, %

60

70

75

80

90

a

0,2

0,15

0,125

0,1

0,05

Из сказанного следует, что задача определения интервального прогноза сводится к расчету размера x. Методики разработаны для следующих ситуаций:

А. Объект прогнозирования — отдельная количественная характеристика. Эксперт указывает РВД, вид распределения, а для распределения Тр и интервал наиболее вероятных значений прогнозируемого показателя.

Б. Прогноз суммы показателей, . Например, сумма объемов выпуска нескольких видов продукции. Для каждого слагаемого указывается РВД и вид распределения. ДВ назначается только для итоговой суммы.

В. Прогноз произведения двух показателей, Y = vw. Например, произведение "нормативного" и объемного показателей. Эксперт указывает РВД, вид распределения и ДВ для каждого сомножителя.

На первый взгляд представляется, что обсуждаемую методику легко распространить на прогноз суммы произведений. Формально это несложно выполнить. Однако, как показали расчеты, степень "сжатия" прогнозного интервала в этих условиях весьма мала, так что применение данной методики не имеет смысла.

Покажем технику применения перечисленных методик для каждого из указанных распределений вероятностей.
^

МЕТОДИКА А. Расчет интервального прогноза отдельной характеристики


Распределение N.

Известно, что площадь под кривой нормального распределения в пределах примерно равна 99%. Отсюда

,

где М — средняя,

— стандартное (среднее квадратическое) отклонение.

Пусть z — нормированное отклонение от средней43, зависящее от выбранной доверительной вероятности. Тогда нормированное значение искомой величины x составит:

, (8.2)

где

u = 3 - z. (8.3)

Вероятности невыполнения прогноза в каждом "хвосте" нормального распределения составят:

. (8.4)

Заметим, что для нормального распределения ДВ = F(z).

В табл. 8.2 44 приводятся значения z, и, в зависимости от уровня ДВ.

Таблица 8.2

ДВ(%)

68

75

80

85

90

95

Z

1

1,15

1,28

1,44

1,65

1,96

U

2

1,85

1,72

1,54

1,35

1,04



0,16

0,125

0,1

0,075

0,05

0,025

Необходимое для расчета по формуле (8.2) значение находим следующим образом:

. (8.5)

Распределение Т.

Искомая величина находится как функция от L и :

. (8.6)

Распределение Тр.

Здесь возможны два варианта. Если , то

, (8.7)

где l = М2 - М1 .

Если же , то

, (8.8)

Распределение Р.

. (8.9)
ПРИМЕР 1

Ожидается, что РВД (допустим, речь идет о годовом размере добычи минерального сырья) оценивается экспертом в объеме 1,2 — 1,8 млн. т. Определим интервальный прогноз для всех перечисленных выше видов распределений при условии, что ДВ = 80%. Для принятого уровня доверительной вероятности = 0,1.

Распределение N. L = 1,8 - 1,2 = 0,6; = 0,6/6 = 0,1; u = 1,72 (см. табл. 8.2). По формуле (8.2) получим

x = 1,72 x 0,1 = 0,172.

Таким образом, прогнозный интервал имеет пределы:

А = 1,2 + 0,172 = 1,37; B = 1,8 - 0,172 = 1,63.

Распределение Т. По формуле (8.6) находим

x = 0,6 х =0,134 ,

откуда

A = 1,2 + 0,134 1,33; B = 1,8 - 0,134 1,67.

Распределение Тр. Пусть интервал наиболее вероятных значений находится в пределах 1,35-1,65, l = 0,3. Поскольку

,

применяется формула (8.7):

;

А = 1,2 + 0,12 = 1,32; В = 1,8 - 0,12 = 1,68.

Распределение Р.

x = 0,1 х 0,6 = 0,06;

А = 1,2 + 0,06 = 1,26; В = 1,8 - 0,06 = 1,74 .

Как видим, распределения N, Т и Тр дали примерно одинаковые интервалы для прогноза, а распределение Р — более "размытый" вариант.
^

МЕТОДИКА Б. Прогноз суммы показателей


Рассматриваются два варианта постановки задачи, когда слагаемые — это независимые величины и когда они зависимы друг от друга45.

^ Независимые слагаемые. Прогнозируемый показатель представляет собой сумму некоторых однородных величин. Слагаемые — независимые или слабо зависимые между собой показатели. Определение прогнозного интервала предполагает выполнение следующих последовательных шагов:

• установление РВД и определение видов распределений (напомним, что все они симметричные);

• расчет средних значений этих распределений и дисперсий;

• расчет общей средней (суммы частных средних) и дисперсии суммы;

• оценка границ интервального прогноза.

Формулы для расчета средних и дисперсий приведены в табл. 8.3 46.

Таблица 8.3

Распределение

Средняя

Дисперсия

N

a + L/2

(L/6)2

Т

a + L/2

L2/24

Тр

а + L/2

(L2 + l2)/24

Р

a + L/2

L2/12

Во всех приведенных в таблице формулах L = b - a .

Расчет суммы средних и дисперсии суммы производится следующим образом:

• сумма частных средних

; (8.10)

• дисперсия суммы

, (8.11)

где Мj, Dj — средние значения и дисперсии частных распределений;

• стандартная ошибка

. (8.12)

Интервал прогноза определяется как

, (8.13)

где z (нормированное отклонение) находится по табл. 8.2 или табл. 5 Приложения в зависимости от принятой ДВ.
ПРИМЕР 2

Эксперты установили следующие РВД и виды распределений для четырех слагаемых (в целях иллюстрации метода приняты различные виды распределений):

Слагаемое

а

b

L

Распределение

1

10

12

2

Т; М = 11

2

50

55

5

Тр; НВР = 52 - 53

3

8

13

5

Р

4

20

24

4

Т; М = 22

Сумма

88

104





Полученные по этим данным значения частных средних и дисперсий приведены в следующей таблице.

Слагаемое

Средняя

Дисперсия

1

11

22/24 = 0,177

2

52,5

(52 + 12)/24 = 1,08

3

10,5

52/12 = 2,08

4

22

42/24 = 0,677

Сумма

96

4,01

Пусть доверительная вероятность равна 75%, F(z) = 0,75. По табл. 8.2 находим z = 1,15; в свою очередь, получим = 2 .

Нижняя и верхняя границы прогнозного интервала равны:

A = 96 - 1,15 x 2 = 93,7; B = 96 + 1,15 x 2 = 98,3.

Как видим, интервал прогноза заметно уже, чем суммы граничных значений РВД слагаемых (88 — 104), но вероятность "попадания" в него также меньше (не 100, а 75%).

^ Сильная зависимость между слагаемыми. Теоретически обоснованное решение проблемы требует в этой ситуации измерения коэффициентов корреляции между попарно взятыми случайными переменными (в нашем случае — слагаемыми). Поскольку следует ожидать в основном положительной корреляции, то дисперсия увеличивается. Следовательно, увеличивается и интервал прогноза. Например, если в примере 2 полагать, что коэффициенты корреляции у всех пар слагаемых одинаковы и равны, допустим, 0,9 (сильная положительная корреляция), то стандартная ошибка увеличится почти в 2 раза и составит 3,91 вместо 2. Искомый интервал в этом случае равен 91,5—100,5. Однако в такого рода задачах вряд ли практически возможен расчет коэффициентов корреляции (хотя бы в связи с отсутствием необходимой информации), поэтому целесообразно поступить иным образом, избежав тем самым расчет упомянутых коэффициентов.

Для решения задачи определим граничные значения прогнозных интервалов для каждого слагаемого, применив методику А. Обозначим эти величины как Aj и Bj. Искомые граничные значения для суммы составят:

.

Слагаемые этих сумм рассчитаем с учетом того, что вероятности реализации прогноза для каждого слагаемого должны быть больше доверительной вероятности для суммы в целом. ДВ для суммы составит

.

Для отдельного слагаемого ДВ определяется как

. (8.14)
ПРИМЕР 3

Используем данные примера 2 и найдем интервальный прогноз для суммы теперь уже зависимых слагаемых при условии, что коэффициенты корреляции неизвестны. Примем, что ДВ для суммы равна 75%. Соответственно для отдельного слагаемого

ДВj = = 0,93 . По формуле (8.1) находим = 0,035. Результаты расчетов величин x, vj и wj представлены в следующей таблице.


Слагаемое

Распределение

а

b

L(I)

Формула

x

Aj

Bj

1

Т

10

12

2

(8.6)

0,26

10,26

11,74

2

Тр

50

55

5(1)

(8.8)

1,01

51,01

53,99

3

Р

8

13

5

(8.9)

0,18

8,18

12,82

4

Т

20

24

4

(8.6)

0,53

20,53

23,47

Сумма




88

104







89,98

102,02
^

МЕТОДИКА В. Прогноз произведения двух параметров


Иногда прогнозируемый показатель представляет собой произведение двух величин Y = VW , где одна величина — качественная характеристика (производительность труда, фондоотдача и т. п.), вторая — объемная величина (количество отработанного времени, размер фондов и пр.). Показатель Y прогнозируется не непосредственно, а на основе прогнозов сомножителей. Если рассматривать сомножители как независимые величины (а в большинстве случаев это правомерно), то методика сводится к следующему.

1. Для каждого сомножителя находится интервальный прогноз: V1, V2; W1,W2. При этом доверительная вероятность принимается на уровне P. Причем

.

Иначе говоря, прогноз сомножителей должен быть сделан с большей доверительной вероятностью, чем прогноз итогового показателя (см. табл. 8.4; в ней же приводятся соответствующие значения ).
Таблица 8.4

ДВ(%)

60

70

75

80

90

95

р (%)

77,5

83,7

86,6

89,4

94,9

97,5



0,112

0,082

0,067

0,053

0,026

0,013

2. Рассчитываются граничные значения прогнозного интервала как произведения V1W1, V2W2. С вероятностью ДВ можно утверждать, что реальное значение Y будет находиться в указанных пределах.

Можно применить и иной подход, взяв за базу средние распределений. Тогда последовательно находим: средние и дисперсии каждого распределения, произведение средних и дисперсию произведения. Последняя рассчитывается следующим образом47:

, (8.15)

где Dj и Mj дисперсия и средняя.
ПРИМЕР 4

Прогнозируется произведение двух случайных переменных, РВД которых показаны ниже в таблице. Доверительная вероятность принята на уровне 80%. Таким образом, Р = 100 = 89,4% . По табл. 8.4 находим = 0,053.

Применим первый из рассмотренных выше подходов. По формулам (8.6) и (8.9) определим значения х и границы прогнозных интервалов для каждого сомножителя.




Распределение

а

b

L

x

А

B

V

T

3

5

2

0,33

3,33

4,67

W

P

10

14

4

0,21

10,21

13,79

Y
















34,00

64,40

Как видим, прогнозный интервал 34 — 64,4 довольно широк. Однако он уже, чем произведение граничных значений РВД (30 — 70).

Для применения второго метода рассчитаем средние и дисперсии.




Средняя

Дисперсия

V

4

0,167

W

12

1,333

Y

48

7,56

Для принятого уровня доверительной вероятности z = 1,28 (см. табл. 8.2). Границы прогнозного интервала составят:

А = 48 -1,28 x 7,56 = 38,32; B = 48 + 1,28 x 7,56 = 57,68.

Второй метод дает более узкий прогнозный интервал.
1   ...   33   34   35   36   37   38   39   40   ...   53

Похожие:

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconМенеджмент
В частности, дано представление о современной теории экспертных оценок, показана необоснованность часто используемых методов сравнения...

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconПрограмма дисциплины «национальная экономика»
Производственные ресурсы. Технологический способ соединения факторов производства. Показатели эффективности. Закон убывающей эффективности....

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconИнформационный лист
Современные средства коммуникации в логистике производственных и сервисных предприятий

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. icon27 производственных предприятий электроэнергетики, приборостроения,...
Среднемесячная производительность труда одного работника превосходит показатель первого полугодия 2005 года на 50%. Средняя заработная...

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconП. м. – процесс упр-я произ-вом пр-ции, включает в себя: упр-е технич...
Эффективность п м во многом определяется точностью прогнозов стратегических тенденций развития общества, идеологии, производственных...

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconАгропромышленный комплекс контрольная работа нормативная база планирования
Контроль за выполнением планов, производственных программ и заданий

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconII. Для опасных производственных объектов типа 3 с признаком опасности 2
Технические решения по обеспечению безопасности технологического процесса [Т, пб, тр]

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconПостановление от 17. 05. 2012 №411 г. Ростов-на-Дону Об утверждении...
«о порядке принятия решения о разработке областных долгосрочных целевых программ, их формирования и реализации и Порядке проведения...

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconПоложение о научном обществе учащихся
Мбоу сош №4 или (по договоренности) базе институтских лабораторий, кафедр, производственных экспериментальных участков

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем. iconВиды измерений, проводимых испытательной лабораторией ООО «Рострудэксперт»
СанПиН 2 548-96 «Гигиенические требования к микроклимату производственных помещений», утв постановлением Госкомсанэпиднадзора РФ...



Образовательный материал



При копировании материала укажите ссылку © 2013
контакты
lit-yaz.ru
главная страница